
Achieving Fine-Grained Flow Management
Through Hybrid Rule Placement in SDNs

Gongming Zhao , Hongli Xu ,Member, IEEE, Jingyuan Fan ,

Liusheng Huang,Member, IEEE, and Chunming Qiao, Fellow, IEEE

Abstract—Fine-grained flow management is useful in many practical applications, e.g., resource allocation, anomaly detection and

traffic engineering. However, it is difficult to provide fine-grained management for a large number of flows in SDNs due to switches’

limited flow table capacity. While using wildcard rules can reduce the number of flow entries needed, it cannot fully ensure fine-grained

management for all the flows without degrading application performance. In this article, we design and implement hybrid rule placement

for fine-grained flow management (to be referred to as HiFi here after). HiFi achieves fine-grained management with a minimal number

of flow entries through taking a two-step approach: wildcard entry installment and application-specific exact-match entry installment.

How to optimally install wildcard and exact-match flow entries, however, is intractable. Therefore, we design approximation algorithms

with bounded factors to solve these problems. We consider how to achieve network-wide load balancing via fine-grained flow

management as a case study. Both experiment on a testbed built with open virtual switches and extensive simulation show that HiFi

can reduce the number of required flow entries by about 45-69 percent and reduce the control overhead by about 28-50 percent

compared with the state-of-the-art approaches for achieving fine-grained flow management.

Index Terms—Software defined networks, fine-grained management, wildcard entry, exact-match entry, approximation

Ç

1 INTRODUCTION

A typical software defined network (SDN) consists of a
logical controller in the control plane and a set of SDN

switches in the data plane [2]. The controller monitors the
network status and determines the forwarding paths of
flows. The switches perform packet forwarding and traffic
measurement for flows based on the flow entries configured
by the controller. Under this framework, the controller is
able to provide centralized control for flows to make net-
work management flexible and improve the network
resource utilization compared with traditional networks [3].

Compared with coarse-grained flow management, fine-
grained flow management has irreplaceable advantages for
some important applications in a network. For example,
researchers have shown that it can improve the success ratio
of portscan detection by about 35 percent through manage-
ment of small (mice) flows or implementing fine-grained
flow management [4]. It is also useful for resource allocation
[3], anomaly detection [4], [5], traffic engineering [6], [7], and
application identification [8], as well as load-balancing [9].

SDN offers a great opportunity for fine-grained flow
management [10]. In an SDN, when a packet arrives at an
SDN switch, the switch will match this packet to all rules in
the flow table. If there is a matched rule, the switch will for-
ward this packet according to the rule’s operation field. Oth-
erwise, the switch will report the packet header to the
controller, which determines the route for this flow and
installs rules on the switch and on the other ones along the
path. In this way, the controller can perform fine-grained
management of the flow by deploying per-flow rule (e.g.,
identified by the 5-tuple, we call it exact-match rule) along
its forwarding path. [11]. In fact, if there is one exact-match
rule along its route path, the controller has a chance to control
this individual flow by modifying this exact-match rule.

However, it is far from trivial to achieve fine-grained
management with SDNs in practice. A strawman solution
would be to install exact-match entries on all switches along
the forwarding path of each flow. Clearly, such an approach
will consume a huge number of flow entries. The problem is
exacerbated due to the fact that Ternary Content Address-
able Memory, commonly used in commercial SDN switches
for storing flow tables/rules [12], [13], is usually expensive,
power hungry and therefore size-limited [12], [14], [15].
Although the switch memory is growing [16] and some
SDN switches (e.g., Noviswitch [17]) adopt RAM-based
flow table for exact matches and TCAM -based flow table
for wildcard matches. It still encounters some scalability
issues: (1) RAM-based flow table may significantly increase
the lookup latency [12], [14], [15]; (2) Encapsulating Packet-
in messages is time-consuming and CPU-consuming for
low-end CPU of switches (e.g., HP 5130 EI switches can
only install 20 rules per second [18], [19]). (3) Encapsulating
Flow-mod messages is time-consuming for SDN controller

� Gongming Zhao, Hongli Xu, and Liusheng Huang are with the School of
Computer Science and Technology, University of Science and Technology
of China, Hefei, Anhui 230027, China, and also with the Suzhou Institute
for Advanced Study, University of Science and Technology of China,
Suzhou, Jiangsu 215123, China.
E-mail: zgm1993@mail.ustc.edu.cn, {xuhongli, lshuang}@ustc.edu.cn.

� Jingyuan Fan and Chunming Qiao are with the Department of Computer
Science & Engineering, University at Buffalo, Buffalo, NY 16260.
E-mail: jfan5@buffalo.edu, qiao@computer.org.

Manuscript received 29 Dec. 2019; revised 4 July 2020; accepted 1 Oct. 2020.
Date of publication 13 Oct. 2020; date of current version 27 Oct. 2020.
(Corresponding author: Hongli Xu.)
Recommended for acceptance by S. Chen.
Digital Object Identifier no. 10.1109/TPDS.2020.3030630

728 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0001-9080-5053
https://orcid.org/0000-0001-9080-5053
https://orcid.org/0000-0001-9080-5053
https://orcid.org/0000-0001-9080-5053
https://orcid.org/0000-0001-9080-5053
mailto:zgm1993@mail.ustc.edu.cn
mailto:xuhongli@ustc.edu.cn
mailto:lshuang@ustc.edu.cn
mailto:jfan5@buffalo.edu
mailto:qiao@computer.org

[20]. For example, the ODL controller (run on Sun Fire
X4150 server) can only encapsulate 600 Flow-mod messages
per second [20]. Thus, to accommodate the processing
capacity constraints of switches and controllers, it is neces-
sary to reduce the use of flow entries on switches for fine-
grained flow management .

A natural way to reduce the number of flow entries
needed is to use default path. Usually, a default path is con-
figured through wildcard rules that can match more than
one flow [21], [22]. In order to manage some specific flows,
one may install additional exact-match rules, as in OFFICER
[23] and HS [24]. However, to distinguish those flows and
install exact-match rules, it requires additional devices (e.g.,
monitor [25]) or software (e.g., statistical modular [24]) to be
deployed in the network, which inevitably increases the sys-
tem setup and maintenance cost.

To overcome the shortcomings of the existing approaches,
in this paper, we build HiFi, a system targeted at providing
fine-grained management for all flows in SDNs while mini-
mizing the number of flow entries that need to be installed on
switches without additional hardware and/or software. In
other words, the goal ofHiFi is two-fold: 1) ensuring that each
flow will be forwarded by matching at least one exact-match
rule along the path from source to destination; and 2) mini-
mizing the number of flow entries needed on switches. HiFi
enables this by taking a two-step approach: wildcard entry
installment and exact-match entry installment. Specifically,
wildcard rules are installed to limit the number of flow entries
used, while exact-match rule installment can offer applica-
tion-specific fine-grained flow management. Together, they
can provide a desirable route for each flow from its source to
destination. Compared with the default path scheme (e.g.,
OFFICER [23] and HS [24]), the significant advantage is that
HiFi can fully achieve fine-grained management for all flows
without the help of additional software modules or devices. It
is worth noting that similar ideas have already been used in
data center networks, where wildcard rules and exact-match
rules are installed on internal switches and edge switches,
respectively [26]. However, their solution is only suitable for
hierarchical networks (e.g., Fat-Tree [27]), and cannot be effi-
ciently applied to general networks (e.g., HyperX [28]). Even
worse, an edge switchwith a limited flow-tablemay become a
bottleneck [29]. Therefore, a more general prototype, that can
be applied to various networks and can relieve flow-table size
constraints, should be proposed.

To apply the idea of HiFi to a general network topology,
we formulate the optimal wildcard and exact-match entry
installment problems using integer linear programs (ILP)
by modeling fine-grained management requirements, flow-
table size constraints, and link capacity constraints, etc.
Unfortunately, neither problems has any optimal solutions
in polynomial time. Hence, we design efficient approxima-
tion algorithms to solve them, and analyze the approxima-
tion factors.

When solving the wildcard entry installment subprob-
lem, we also take into consideration the case where it is
impossible to provide fine-grained management for all
flows in a network simply because there are too many flows.
For example, assume that the network consists of 100
switches, and the flow-table size of each switch is 4,000. As
a result, it contains a total of 400,000 entries in the network.

When there are 600,000 flows, there’s no way to provide
fine-grained management for all these flows. For such a
case, we design an approximation algorithm to maximize
the number of flows that can be controlled individually
given the flow-table size constraints.

To validate our design, we implement HiFi in a testbed
with open virtual switches without additional hardware and
software, while taking long-term traffic statistics and flow-
table size constraint into consideration. Both testbed experi-
ments and large-scale simulations show that HiFi helps to
reduce the number of required flow entries by 45-69 percent
and reduce the control overhead by 28-50 percent compared
with the state-of-the-art solutions.

The rest of this paper is organized as follows. Section 2
surveys the related work. Section 3 provides a motivational
example and system workflow. In Sections 4.2 and 6.2, we
define the wildcard entry installment subproblem for two
different cases, and propose approximation algorithms
respectively. Section 6.1 focuses on the load balancing as a
case study. The experimental and simulation results are pre-
sented in Section 7. We conclude the paper in Section 8.

2 RELATED WORKS

SDN, with its ability to separate the control plane and the
data plane, can provide fine-grained flow management for
better network performance and more efficient network
management [3], [7], [30]. A natural way for fine-grained
management is to deploy fully exact-match rules for each
flow. For example, R. Cohen et al. [31] proposed a method
that installed exact-match entries on all switches along the
forwarding path under flow-table size constraint. Similar
methods have been also used in [3], [32]. However, since
each flow will consume several flow entries on different
switches, such schemes installing exact-match rules (to be
referred to as ER here after) can only support a small num-
ber of flows, and some flows will be dropped [31], which is
not fit for large-scale networks.

To save the number of flow entries, another way is to
combine the default path and exact-match rules (to be
referred to as DER here after) for fine-grained management.
Specifically, DER first deploys default paths for all flows,
and then installs exact-match rules for some (or all) flows to
implement fine-grained management. However, such an
approach has several weaknesses. First, when there is a
default path from source to destination, all matching flows
will be directly forwarded to the destination. Thus, the con-
troller cannot capture flows that are active in the network,
which makes the fine-grained flow management difficult.
For some mice flows, their duration may be very short. As a
result, we may not capture the existence of these mice flows,
which will increase the risk of network attacks [5]. Second,
each flow entry can only acquire the statistics information
of aggregate flows. To derive the information of each indi-
vidual flow for fine-grained management, some additional
devices (e.g., monitor [25], [33]) or software (e.g., statistical
modular [24]) are required for traffic measurement. It
increases the cost.

Several works [13], [26], [34] attempted to achieve fine-
grained management through well-designed routing meth-
ods without additional device/software. FlowStat [13]

ZHAO ET AL.: ACHIEVING FINE-GRAINED FLOW MANAGEMENT THROUGH HYBRID RULE PLACEMENT IN SDNS 729

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

proposed an adaptive flow-rule placement system in an
attempt to provide fine-grained management, which con-
sisted of three parts: path selection, rule placement and rule
redistribution. They designed two greedy algorithms to
select paths and install rules for each flow one by one. How-
ever, this method may cause some subsequent flows to be
forwarded directly to the destination with already deployed
wildcard rules. Thus, it is difficult for FlowStat to achieve
fine-grained management for all flows. PACO [34] regarded
each path as a concatenation of pathlets (e.g., subpaths). All
information about the subpath was stored in each packet
header, so that PACO could provide fine-grained path con-
trol with limit flow entries. However, PACO needs to add
labels in the packet header, thus increasing the computing
overhead on switches and the bandwidth consumption.
Meanwhile, exact-match entries are usually installed on the
edge switches, which may cause these edge switches
become a bottleneck. To conquer these disadvantages, K. He
et al. [26] proposed a practical system, called Presto. This
system divided all the switches into two categories: edge (or
ingress) switches and internal switches. Presto installed
exact-match and wildcard entries on edge and internal
switches respectively for fine-grained flow management.
However, Presto also encounter the flow-table size con-
straint, especially for edge switches, which will be validated
by simulations in Section 7.

3 MOTIVATION AND HIFI OVERVIEW

3.1 A Motivating Example

In this section, we give an example to illustrate the advan-
tages and disadvantages of both ER and DER. The usage of
entries for various entry installment schemes is summarized
in Table 1.

Definition 1 (Controllable Flow). If we achieve fine-grained
management for a flow (i.e., a flow can be matched by at least
one exact-match entry), we call this as a controllable flow or
say that this flow can be controlled.

As shown in Fig. 1, there are 4 flows in the network, 2
flows from v3 to v1 and the other 2 flows from v3 to v4. For
simplicity, the intensity of each flow is set to 1. To achieve
load balancing, the route configuration is illustrated in
Fig. 1. Specifically, 2 flows follow the path v3 ! v2 ! v1,
and other 2 flows follow the path v3 ! v6 ! v5 ! v4.
Accordingly, the maximum link load (i.e., 2) is minimized.

To realize this routing, ER installs an exact-match entry
on each switch along the forwarding path of each flow.
Obviously, this scheme can support fine-grained manage-
ment (i.e., 4 flows are all controllable). However, this
scheme will cost more entries, e.g., the total number of con-
sumed entries is 14 in the network (i.e., 3.5 entries per flow
on average), and the maximum number of consumed
entries is 4 on switch v3. Considering the limited flow
entries on commodity SDN switches, it is impractical for
large-scale networks [29].

On the other hand, DER leverages the default paths to
reduce the entry cost. We assume that the default path from
v3 to v1 is v3 ! v2 ! v1, and the default path from v3 to v4 is
v3 ! v2 ! v1 ! v4. When the flows arrive, all flows will be
forwarded by default paths directly. In this case, the maxi-
mum link load is 4, and no flow is controllable. To reroute
some flows and achieve better load balancing, we should
deploy additional hardware (e.g., monitor [25]) or software
(e.g., statistical modular [24]) to identify those flows and
determine their traffic statistics. Then, 2 flows will be re-
routed to path v3 ! v6 ! v5 ! v4 by installing exact-match
entries. As a result, only two re-routed flows can achieve
fine-grained management through exact-match entries and
the total number of installed flow entries is 8 in the network.
Specifically, we need to install one wildcard entry and two
exact-match entries on switch v3. Although DER can save
flow entries, this scheme cannot fully guarantee fine-
grained management for all flows (i.e., only 2 flows are con-
trollable). We should note that with more exact-match rules
installed, more flows will be controllable.

3.2 Our Intuition

A question immediately following the above discussion is
can we do better by combining the merits of ER and DER?
Clearly, we should use as many wildcards as possible to
save flow entries with the constraint that no flow will be for-
warded to the destination only with wildcard entries. In the
meantime, we should break the default path such that no
flow will be forwarded to the destination only with wild-
card entries. In other words, all flows should be controlled
through at least one exact-match entry to achieve fine-
grained flow control.

In Fig. 1, for flows from switch v3 to switch v1, we install
one wildcard entry to match them on switch v3 and switch v1,
respectively. When two flows, with egress switch v1, arrive at
v3, they will be directly forwarded to v2, which cannot find a
matching entry for these two flows, and therefore, this flow
will be reported to the controller, which can install two exact-
match entries on switch v2 for these two flows to achieve fine-

TABLE 1
Number of Required Entries on Switches by Three

Entry Installment Schemes

schemes v1 v2 v3 v4 v5 v6 max total fine-grained

ER 2 2 4 2 2 2 4 14 @
DER 1 1 3 1 1 1 3 8 partial
HiFi 1 2 3 1 1 1 3 9 @

ER installs exact-match entries on all switches along the forwarding path of
each flow. DER installs exact-match entries only for partial flows (not all
flows). Our scheme installs exact-match entries on part of switches along a
path (i.e., v2 for p1 and v3 for p2), and the other switches along a path are
installed wildcard entries. As a result, our scheme supports fine-grained man-
agement with a small number of entries and without additional device/
software.

Fig. 1. A network scenario. There are 2 flows from v3 to v1 and the other
2 flows from v3 to v4. The flow intensity is set to 1 for simplicity. A load-
balancing route configuration is illustrated.

730 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

grained management. Similarly, for flows from switch v3 to
switch v4, we install onewildcard entry on switches v4, v5 and
v6, respectively. Besides, we install two exact-match entries on
switch v3. As a result, the total number of installedflowentries
is 9, which is almost similar to that by DER. What’s more
important, our scheme can achieve fine-grained management for all
flows without additional device/software. We call this scheme as
hybrid rule placement for fine-grainedmanagement orHiFi.

3.3 Application Scenarios for HIFI

Per-flow statistics are important for various application sce-
narios and many recent works are devote to achieving per-
flow monitoring in SDNs, such as [13], [35]. Though fine-
grained flow management, we can get per-flow statistics,
which will help us better explore the advantages of central-
ized control in SDNs for many practical applications, e.g.,
resource allocation [3], anomaly detection [4], [5], traffic engi-
neering [6], [7], and application identification [8], as well as
load-balancing [9]. We give three detailed application scenar-
ios to show the superiority of fine-grained flowmanagement.

� Fine-grained management for all flows can improve
the success ratio of anomaly detection (e.g., detecting
spam, denial-of-service (DoS) attacks or worm scans
[4]). For example, the information of small (mice)
flows (e.g., address access patterns, connection sta-
tus, traffic size and flow duration) is important for
port scan detection [4]. If we adopt the coarse-
grained mode, since many flows matching with a
wildcard rule are aggregated into one “macroflow”
[29], the controller cannot acquire the detailed infor-
mation of each individual mice flow, such as traffic
size and flow duration [4]. As a result, the network
may encounter serious and unacceptable security
issues, e.g., network attack and paralysis. On the
contrary, the fine-grained management mode can
provide these information through exact-match
entries, and thus help to detect anomalous traffic to
protect the network.

� The second example is the application-aware QoS
routing. Nowadays, various applications are increas-
ingly emerging, ranging from latency-sensitive
applications to bandwidth- hungry applications.
Thus, advanced traffic engineering (e.g., content-ori-
ented processing) requires distinguishing the incom-
ing flows of different applications through the
packet headers and specifies proper routing strategy
according to specific application requirements [8].
To this end, we should adopt fine-grained mode,
which can provide flow-level quality of service
(QoS) by matching exact-match entries. For example,
we can give a higher routing priority for the traffic of
specified high-level applications (e.g., adaptive
video streaming and VoIP) through fine-grained
flow management and management. On the con-
trary, if we adopt coarse-grained mode, flows that
belong to different applications may be aggregated
and follow the same routing policy. Thus, this mode
cannot provide better QoS strategies for different
applications.

� Most of today’s networks rely on middleboxes (e.g.,
firewalls, IPSs, NATs) to provide high security, criti-
cal performance and policy compliance capabilities
[36]. Due to the dynamics and diversity of flows, dif-
ferent flows need to pass through different middle-
box sequences (or service chains). Obviously, the
fine-grained flow management mode can leverage
the exact-match entry to redirect traffic to the proper
middlebox. However, the coarse-grained flow mode
cannot provide flow-level traffic operation control
due to flow aggregation. Thus, this control mode
cannot guarantee the traffic passing through the
required middleboxes and may cause the network
policy failure. One may say that we can design effi-
cient wildcard rules to satisfy this requirement, it
also increases the complexity of network manage-
ment due to different requirements on flows. There-
fore, the fine-grained management is necessary for
improving the effectiveness of middleboxes.

From the above three examples, we find that the fine-
grained flow management is necessary and important for
many practical applications. Thus, we design HIFI proto-
type for fine-grained flow management in this paper. Note
that, we try to achieve fine-grained flow management for all
flows (or as many flows as possible) in the networks for sim-
plicity in this paper. However, HIFI is also applicable for
scenarios that only a specific set of flows need to be fine-
grained controlled, which has been discussed in Section 4.5.

3.4 Architecture and Workflow of HiFi

As shown in Fig. 2, HiFi achieves fine-grained flow manage-
ment through two main control plane modules: wildcard
entry installment and exact-match entry installment. The
former periodically determines how to install/update wild-
card rules (i.e., Flow-Mod) on switches using collected traf-
fic synopsis, while the latter installs application-specific
exact-match entries (i.e., Flow-Mod) by processing flow
requests (i.e., Packet-In) from the data plane.

Two constraints need to be met when installing the rules:
1) a flow should reach its destination; 2) when a flow is
being forwarded to its destination, there will be at least one
switch where the flow cannot find a matched wildcard rule.
Thus, this switch will report the flow to the controller,

Fig. 2. HiFi architecture.

ZHAO ET AL.: ACHIEVING FINE-GRAINED FLOW MANAGEMENT THROUGH HYBRID RULE PLACEMENT IN SDNS 731

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

which will in turn install an exact-match rule on this switch
for this flow. As a result, all following packets of this flow
will be controlled through this exact-match entry. One may
think that it is natural to study the joint optimization of
wildcard and exact-match entries installment. However,
due to traffic dynamics, it may not be feasible. If we update
a wildcard entry, all flows matched with this entry will be
affected, and their routes may be disrupted. Thus, it is inap-
propriate to update the wildcard entries frequently. Mean-
while, the exact-match entry installment is usually
determined by application requirements, e.g., load balanc-
ing or throughput maximization [8], and each new-arrival
flow will trigger the exact-match installment event. Thus, it
is necessary to frequently update the exact-match entries to
pursue different application requirements.

In HiFi, we will trigger 1) wildcard entry installment using
timer, and 2) exact-match entry installment using packets, which
are described as follows:

Step 1 of HiFi: As shown in Fig. 3a, when a timer (e.g., 10
min) expires, HiFi first estimates the traffic synopsis
based on traffic matrix prediction [37], and decides if it
is feasible for all flows to be controlled individually
(which will be discussed in more detail in Section 4.3).

� If yes, which is referred to as case A, HiFi deter-
mines how to install wildcard entries to mini-
mize the maximum flow entry utilization ratio
among all switches (Section 4.2).

� Otherwise, we cannot provide fine-grained man-
agement for all flows, called case B. HiFi would
maximize the number of controllable flows sub-
ject to the flow-table size constraint (Section 6.2).

Step 2 of HiFi:As illustrated in Fig. 3b, when a packet arrives at
a switch, it will be handled by the flow table if a matching
entry exists. Otherwise, HiFi would determine how to
install exact-match entries for this flow (Section 6.1).

Under the HiFi architecture, wildcard entry installment
module is triggered by timer and exact-match entry

installment module is triggered by new-arrival packets.
These two modules can run in parallel and entries on differ-
ent switches can be installed in parallel.

4 WILDCARD ENTRY INSTALLMENT FOR CASE A

In this section, we first assume that there is a feasible solu-
tion which allows all flows to be individually controlled
(i.e., we are dealing with case A), and address the wildcard
entry installment problem for case A (WEI-A). Moreover,
we design an efficient algorithm, and then analyze the
approximation performance.

4.1 Network Model

An SDNnetwork typically consists of three device sets: a clus-
ter of controllers; an SDN switch set, V ¼ fv1; . . . ; vng, with
n ¼ jV j; and a terminal set, U ¼ fu1; . . . ; umg, with m ¼ jU j.
The controllers monitor the network status, and are responsi-
ble for route selection of all flows in the network. The switches
perform packet forwarding and trafficmeasurement for flows
based on the flow entries configured by the controller. These
switches and terminals comprise the data/forwarding plane
of an SDN. Thus, on the view of the data plane, the network
topology can bemodeled by a graphG ¼ ðU [V;EÞ, whereE
is the link set in the data plane.

Assume that there is a set of wildcard rules, denoted as
IR ¼ fr1; r2; . . . ; rm0 g, with m0 ¼ jIRj. For example, a natural
way for setting wildcard rules is as follows: we adopt the
destination-based wildcard rule (e.g., destination-based
OSPF method) for simplicity. Each wildcard rule ri only
specifies the destination ui, and can match all the sources in
the network. In this case, m0 is equal to the number of desti-
nations (e.g., m) in a network. The setting of these wildcard
rules has been widely used in different applications, e.g.,
traffic engineering [29] and statistics collection [38]. Note
that our proposed method is also applicable for other wild-
card settings, which will be discussed in Section 4.5.

4.2 Formulation for the WEI-A Problem

Due to the prior work of traffic matrix prediction on SDNs
[37], [39], it is reasonable to assume that we can obtain a
flow set, denoted as P. Moreover, the set of flows passing
through switch v to destination u is denoted as Pv

u, and Pu

denotes the set of flows with destination u. The OSPF path
and the destination of each flow f 2 P are denoted as hf

and dðfÞ, respectively. Note that, we have tested the influ-
ence of prediction accuracy on performance in Section 7.3.4.

To achieve fine-grained management, each flow will match
at least one exact-match entry along its forwarding path. In
otherwords, each flow should not be forwarded bymatchingwildcard
entries on all switches along the path. In order to determine how to
install wildcard entries for each destination u, we first build a
tree Tu rooted at u that branches according to the flow set Pu.
For simplicity,we use the variable qvu to denotewhether the con-
troller will install exact-match entries on switch v for flows Pv

u

or not. There are two cases for each switch v on treeTu.

1) qvu ¼ 0. We install a wildcard entry on switch v for
destination u. From the view of saving flow entries,
it is no need to install exact-match entries even for a
selected fraction of flows Pv

u.

Fig. 3. Illustration of the HiFi’s workflow.

732 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

2) qvu ¼ 1. The controller will install exact-match entries
on switch v for flows Pv

u. Thus, it requires jPv
uj exact-

match entries on switch v, or we need to reserve jPv
uj

entries for a flow set Pv
u. Note that how to deploy

exact-match entries depends on the current traffic
and practical requirements, and will be discussed in
Section 6.1.

One may think we could install a wildcard rule with a
lower priority, while installing exact-match entries with
higher priority for a selected fraction of flows in Pv

u, which
potentially leads to a lower cost of flow entries on switches.
In fact, it is not practical on commodity switches. Assume
that we have installed a wildcard entry on switch v for flows
in Pv

u. When a new flow arrives, flows will be forwarded
directly through switch v by matching a wildcard entry.
That means, we have no chance to install exact-match
entries with higher priority for a selected fraction of flows
in Pv

u on switch v once flows arrive. Thus, we have to
achieve fine-grained management on other switches for
flows in Pv

u and there is no need to install exact-match
entries for a selected fraction of flows in Pv

u on switch v.
As a result, itwill cost a total number bðvÞ of entries (includ-

ing wildcard entries and reserved exact-match entries) on
switch v. Each commodity switch is usually equipped with a
limited number of flow entries (e.g., 4,000 entries per switch
[29]), and these entries will be shared by routing/measure-
ment/security functions [24], [40]. A natural idea is to mini-
mize the maximum number of required flow entries among
all switches. However, it may not be fair for heterogeneous
switches in the network. Thus, we expect to minimize the
maximum flow entry utilization ratio among all switches in
the network, so that the remaining flow entries on each switch
can accommodate more flows with exact-match rules.
Accordingly, we formulate this problem as follows:

min b

S:t:

P
v2hf q

v
dðfÞ � 1; 8f 2 P

bðvÞ ¼ P
u2U :v2Tuðqvu � jPv

uj þ 1� qvuÞ; 8v 2 V
bðvÞ � b � sðvÞ; 8v 2 V
qvu 2 f0; 1g; 8v; u

8>><
>>: :

(1)

The first set of inequalities denotes that each flow will
match at least one exact-match entry, which means that
each flow is controllable. The second set of equalities means
that the total number of required entries on each switch v is
bðvÞ. Note that, qvu � jPv

uj and 1� qvu denote the number of
reserved exact-match entries and the wildcard entry on
switch v for destination u, respectively. The third set of
inequalities denotes that the number of consumed flow
entries on switch v should not exceed b � sðvÞ, where b is the
flow entry utilization ratio and sðvÞ is the flow-table size on
switch v. The objective is to minimize the maximum flow
entry utilization ratio among all switches, that is,min b.

4.3 Algorithm Design for WEI-A

This section develops a rounding-based wildcard entry
installment algorithm to solve the WEI-A problem. The pro-
posed algorithm consists of three main steps. The first step

will relax the integer program, denoted as LP1, by relaxing
variable qvu. We can solve LP1 in polynomial time with a lin-
ear program solver, and obtain the fractional solutions,
denoted as eqvu, 8v 2 V; u 2 U . In the second step, the frac-
tional solution eqvu will be rounded to the 0-1 solution bqvu to
decide where to install wildcard entries for each destination
u. The set of unvisited flows is denoted as P0, initialized as
all flows in P. Moreover, we initialize bqvu ¼ 0, 8v 2 V; u 2 U .
We arbitrarily choose an unvisited flow, denoted as f , from
set P0. The algorithm chooses a switch with maximum eqvdðfÞ
among all v 2 hf , and set bqvdðfÞ ¼ 1. That is, we will not install
a wildcard entry on switch v for destination dðfÞ. Thus, all
flows in set Pv

dðfÞ can be controlled on switch v. We update
P0 ¼ P0 �Pv

dðfÞ. This step will terminate when all flows are
visited. In the third step, we install wildcard entries based
on rounding solutions. For each destination u and switch
v 2 Tu, we install one wildcard entry on switch v for destina-
tion u if bqvu ¼ 0. The algorithm is described in Algorithm 1.

Algorithm 1.Wildcard Entry Installment for WEI-A

1: Step 1: Solving the Relaxed WEI-A Problem
2: Construct the relaxed problem LP1

3: Obtain the fractional solutions eqvu, 8v 2 V; u 2 U
4: Step 2: Deriving the 0-1 Solution
5: P0 ¼ P

6: Let F represent the empty set
7: bqvu ¼ 0, 8v 2 V; u 2 U
8: while P0 6¼ F do
9: Arbitrarily choose an unvisited flow f from P0

10: Choose a switch with maximum eqvdðfÞ among all v 2 hf ,
and set bqvdðfÞ ¼ 1, P0 ¼ P0 �Pv

dðfÞ
11: end while
12: Step 3: Installing Wildcard Entries
13: for Each destination u 2 U do
14: for Each switch v 2 Tu do
15: if bqvu ¼ 0 then
16: Install a wildcard entry on switch v for u
17: end if
18: end for
19: end for

Note that, after the above algorithm completes, if we find
that the total number of required flow entries on some
switch exceeds its flow-table size, it means that we cannot
provide fine-grained management for all flows due to flow-
table size constraint. We will discuss that case in Section 6.2
(the WEI-B problem).

4.4 Performance Analysis

We analyze the approximation performance of the pro-
posed algorithm. Let u be the maximum number of switches
visited by each flow. We first give a lemma according to the
rounding operation.

Lemma 1. After rounding operation, we have eqvu � 1
u
� bqvu,

8v 2 V; u 2 U .

Proof. Weprove this lemmaby the following two cases of each
variable bqvu. On one hand, bqvu ¼ 0. Obviously, eqvu � 1

u
� bqvu. On

the other hand, bqvu ¼ 1. According to the second step ofAlgo-
rithm 1, we know that there exists a flow f that allows eqvu ¼

ZHAO ET AL.: ACHIEVING FINE-GRAINED FLOW MANAGEMENT THROUGH HYBRID RULE PLACEMENT IN SDNS 733

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

maxfeqv0u ; 8v0 2 hfg. By the first set of inequalities in Eq. (1),
we can prove that eqvu � 1

u
. Combining the above two cases,

we have eqvu � 1
u
� bqvu, 8v 2 V; u 2 U . tu

After solving the linear program in the first step of the pro-
posed algorithm, we derive the fractional solutions eqvu, 8v 2
V;u 2 U , and the result eb for the relaxed WEI-A problem.
Obviously, eb is the lower bound for the optimal solution
obtained fromEq. (1). According to the algorithmdescription,
the required number of flow entries on switch v is

X
u2U :v2Tuðbqvu � jPv

uj þ 1� bqvuÞ
�
X

u2U :v2Tuðu � eqvu � ðjPv
uj � 1Þ þ 1Þ

�u � eb � sðvÞ � u � b � sðvÞ:
(2)

The first inequality is correct because jPv
uj � 1 � 0 for each

v 2 Tu. Thus, we can conclude that:

Theorem 2. The proposed algorithm can achieve the u-approxi-
mation for the WEI-A problem.

4.5 Discussion

� In some practical scenarios, only a specific set of
flows (or applications) requires to be controlled with
fine-grained management. For example, in a bank
network system, there are 10 servers depositing key
data, and only flows towards these key servers
should be controlled. The other flows can be aggre-
gated for network scalability and resource reusabil-
ity. To deal with this case, we only need to change
the flow set P in Eq. (1) to the set of flows towards
these key servers. Then we can minimize the maxi-
mum number of required flow entries to provide
fine-grained management for these flows.

� In this paper, we install wildcard entries according
to destination-based OSPF. Note that it is also appli-
cable for other wildcard entry installment schemes.
For example, assume that we want to install wild-
card entries based on egress switches. To deal with
this case, we only need to build the tree Tv for each
switch v 2 V according to the flows whose egress
switch is v. Thus, our proposed algorithm has strong
applicability.

5 WILDCARD ENTRY INSTALLMENT FOR CASE B

In Section 4.2, we assume that the flow-table size of each
switch is enough to support all flows with fine-grained
management. However, when there are too many flows in a
large-scale network, we may not be able to provide fine-
grained management for all flows due to flow-table size
constraint. In this section, we solve the Wildcard Entry
Installment problem for case B (WEI-B).

5.1 Definition of the WEI-B Problem

Under this situation, we just select partial flows for fine-
grained management and others for coarse-grained man-
agement so as to serve all flows with flow-table size con-
straint. We formulate this problem as follows:

max
X

f2P �f

S:t:

�f � P
v2hf q

v
dðfÞ; 8f 2 PP

u2U:v2Tuðqvu � jPv
uj þ 1� qvuÞ � sðvÞ; 8v 2 V

�f ; q
v
u 2 f0; 1g; 8f; v; u

8<
: ;

(3)

where �f denotes whether flow f is controllable or not. The
first set of inequalities denotes that flow f is controllable if
this flow will match at least one exact-match entry along the
path. The second set of inequalities describes that the
required flow entries on each switch v 2 V should not
exceed its flow-table size sðvÞ. The objective is to maximize
the number of controllable flows, which is helpful for differ-
ent applications, such as traffic engineering or attack detec-
tion [3], [4].

Algorithm 2.Maximizing Controllable Flows for WEI-B

1: P ¼ F
2: while jV j > 0 do
3: Step 1: Choosing a switch with the maximum profit
4: for each switch vi 2 V do
5: Apply the FPTASmethod of 0-1 knapsack to compute the

maximum profit pðviÞ for each switch vi with knapsack
size sðviÞ � wðviÞ

6: end for
7: Select switch v0 with the maximum profit
8: The installed wildcard rules on v0 is denoted as IR0

9: for each wildcard rule ru 2 IR0 do
10: P ¼ PþPv0

u

11: end for
12: V ¼ V � fv0g
13: Step 2: Updating the profit of each flow set
14: for each switch vi 2 V do
15: for each wildcard rule rj 2 IR do
16: pðPvi

uj
Þ ¼ jPvi

uj
�Pj

17: end for
18: end for
19: end while

5.2 Algorithm Design for WEI-B

We give an approximation algorithm based on 0-1 knapsack
to solve this problem. Before algorithm description, we con-
sider a special case in which there is only one switch in the
network. Assume that we have installed wildcard entries
for all flows on switch v, and the number of occupied flow
entries is wðvÞ. Then we need to replace some wildcard
entries with exact-match entries to control some flows for
fine-grained management. We can regard this special case
as the 0-1 knapsack problem [41]. More specifically, the size
of knapsack (or switch v) is the number of residual flow
entries, i.e., sðvÞ � wðvÞ. For each destination u, Pv

u can be
regarded as an individual object. If we install exact-match
entries for flows with destination u, then we should install
jPv

uj exact-match entries (one for each flow) and delete the
corresponding wildcard entry. Thus, it will increase jPv

uj �
1 flow entries. That is, the cost of Pv

u is cðPv
uÞ ¼ jPv

uj � 1.
Besides, the profit of each set Pv

u, denoted as pðPv
uÞ, is the

734 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

number of uncontrolled flows in set Pv
u. It can be solved by

the previous knapsack algorithms, e.g., [42].
This algorithm consists of jV j (i.e., the number of all

switches) iterations and each iteration has two steps. In the
first step, we adopt the fully polynomial time approxima-
tion scheme (FPTAS) algorithm [42] to solve the 0-1 knap-
sack problem for each residual switch. Then we choose a
switch, denoted as v0, with the maximum profit among all
the residual switches. The FPTAS method for the 0-1 knap-
sack problem also determines the value of qv

0
u for all u 2 fu 2

U : v0 2 Tug (i.e., the individual objects that are put into the
knapsack v0). In the second step, the algorithm updates the
profit of each object Pv

u. For simplicity, let P be the set of
controllable flows. The profit of an individual object pðPvi

uj
Þ

is updated as pðPvi
uj
Þ ¼ jPvi

uj
�Pj. The algorithm will termi-

nate until all switches have been checked. The detailed algo-
rithm is described in Algorithm 2.

5.3 Performance Analysis

In the following, QG denotes the set of controllable flows by
Algorithm 2 (for WEI-B). In the lth iteration of Algorithm 2,
the controllable flow set is G0

l, and the incremental profit is
denoted as X0

l. That is, X0
l ¼ vðG0

ln
S l�1

i¼1G
0
iÞ, where vð�Þ

denotes its cardinality.

Lemma 3. Algorithm 2 (for WEI-B) achieves a ð2þ �Þ
-approximation.

Proof. Let c be the approximation ratio of the FPTAS algo-
rithm for 0-1 knapsack. Consider an instant that Algo-
rithm 2 has executed l-1 iterations. In the lth iteration, the
algorithm chooses the switch v0l. Assume that the optimal
solution will select a flow set, denoted as Ol, from switch
v0l. If we choose Ol instead of G0

l in this iteration, the incre-
mental profit becomes vðOln

S l�1
i¼1G

0
iÞ, denoted as X00

l.
Obviously, we have c �X0

l � X00
l ¼ vðOln

S l�1
i¼1G

0
iÞ �

vðOlnQGÞ. It follows

c � vðQGÞ ¼
Xn

l¼1
c �X0

l �
Xn

l¼1
vðOlnQGÞ

¼
Xn

l¼1
vðOlnQGÞ � vð

[n

l¼1
OlnQGÞ

¼ vðOPTnQGÞ � ½vðOPT Þ � vðQGÞ�:
(4)

Thus, we have

ð1þ cÞ � vðQGÞ � vðOPT Þ: (5)

The FPTAS method achieves the ð1þ �Þ-approximation
for 0-1 knapsack problem [42], where � is an arbitrarily
small value. Thus, by Eq. (5), the proposed algorithm
achieves ð2þ �Þ-approximation for our problem. tu

Lemma 4. The time complexity of Algorithm 2 (for WEI-B) is
Oðn2�m2

� þ n2 �mÞ, where n, m are the number of switches, the
number of terminals in a network, respectively.

Proof. There are at most n iterations in Algorithm 2, and
each iteration consists of two main steps. In the first step,
we need run at most n times FPTAS algorithm and the
time complexity of each FPTAS algorithm is Oðm2

� Þ [42].
Thus, the time complexity for step 1 is Oðn�m2

� Þ. In the sec-
ond step, we update the profit of each wildcard rule set
on each switch, which takes Oðn �mÞ time. As a result,

the total time complexity of Algorithm 2 is Oðn2�m2

� þ n2 �
mÞ, where n, m are the number of switches, the number
of terminals in a network, respectively. tu

6 EXACT-MATCH ENTRY INSTALLMENT

In this section, we describe step 2 of HiFi: exact-match entry
installment, which is triggered by new packet arrival events.
When a packet arrives at a switch and there is no matched
entries, the switch will report the packet header to the con-
troller. The controller will install exact-match entries to
achieve specific application requirements, e.g., load balanc-
ing or throughput maximization. This section focuses on
load balancing as a case study.

Note that, the installation of exact-match entries depends
on the performance goal and the management policies,
which are set by the system administrator and vary greatly
in practice. Nevertheless, the fine-grained flowmanagement
architecture has an open design that can accommodate any
implementation of exact-match entry installment module.
For the purpose of completeness and numerical evaluation,
we provide load balancing as a case study in this section
with one implementation. We think its properties should
not be viewed as limitation of our fine-grained flow man-
agement design because this specific implementation can be
replaced with other implementations in practice.

6.1 Exact-Match Entry Installment for Load
Balancing

This section studies the exact-match entry installment for
load balancing (MT-LB) as a typical case. In Sections 4.2 and
6.2, the flow set is obtained through long-term traffic matrix
prediction. In this section, when a packet arrives at a switch
and there is no matched entry, the switch will report the
packet header to the controller. Thus, instead of the long-
term traffic observation in Sections 4.2 and 6.2, we care for
the current flow set G, and the traffic size (or intensity) of
each flow g 2 G is denoted by fðgÞ. We use two different
notations to emphasize the difference in flow set.

This section studies the exact-match entry installment for
load balancing (MT-LB) as a typical case. To obtain better
network performance, we should dynamically update the
flow routes so as to adapt to the traffic dynamics [43]. Thus,
instead of the long-term traffic observation in Section 4.2,
we care for the current flow set G, and the traffic size (or
intensity) of each flow g 2 G is denoted by fðgÞ. With the
system running, the flow set Gwill be updated.

We first introduce how to construct a feasible path set
IPv2

v1
from switch v1 to switch v2, which is determined by the

management policies and performance objectives. If there
are too many feasible paths that satisfy the management
policies, we may include only a certain number of the best
ones under a certain performance criterion, such as having
the shortest number of hops or having the large capacities.
Then, we explore a feasible path set IPg for each flow g.
Under the proposed HiFi framework, when a flow g arrives
at the network, since some wildcard entries may be installed
on some switches, flow g may be directly forwarded to a
switch, denoted by vg , in which there is no matching entry
for this flow. The forwarding path from the source to switch
vg is denoted by pwg . Then, we derive a feasible path set IPg

ZHAO ET AL.: ACHIEVING FINE-GRAINED FLOW MANAGEMENT THROUGH HYBRID RULE PLACEMENT IN SDNS 735

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

as follows: for each path p 2 IPeðgÞ
vg

, where eðgÞ denotes the
egress switch of flow g, we construct a path p0 by combining
pwg , p, and the link between the egress switch eðgÞ and the
destination dðgÞ. If this path has no loop, we add it to IPg .

Algorithm 3. Exact-Match Entry Installment for Load
Balancing

1: Step 1: Solving the Relaxed MT-LB Problem
2: Relax Eq. (6) by replacing the fourth line of integer con-

straints with 0 � ypg � 1
3: Driven the fractional solutions eypg , 8g 2 G; p 2 IPg

4: Step 2: Route Selection for Load Balancing
5: Obtain an integer solution bypg by rounding method
6: for Each flow g 2 G do
7: for Each each path p 2 IPg do
8: if bypg ¼ 1 then
9: Route flow g to path p
10: end if
11: end for
12: end for

The MT-LB problem will select one feasible path from IPg

for each flow g to achieve load balancing. Let cðeÞ and lðeÞ
denote the capacity of link e and the traffic load on link e,
which is available to the controller by OSPF-TE [32]. The
load-balancing factor � is defined as � ¼ maxflðeÞcðeÞ ; 8e 2 Eg.
We expect to minimize the load-balancing factor, i.e.,min �.

We give the formulation of the MT-LB problem. Let an
indicator variable ypg 2 f0; 1g denote whether flow g will be
routed on a path p 2 IPg or not. Let Iðg; p; vÞ be a binary value
for exact-match entry installment: if switch v has already
installed the wildcard entry for destination dðgÞ, and the
next hop of this wildcard entry point to overlaps with the
next hop of switch v on path p, then there is no need to install
an exact-match entry on switch v, i.e., Iðg; p; vÞ ¼ 0; other-
wise Iðg; p; vÞ ¼ 1. MT-LB solves the following problem:

min �

S:t:

P
p2IPg

ypg ¼ 1; 8g 2 GP
g2G

P
p2IPg :v2p y

p
g � Iðg; p; vÞ � dðvÞ; 8v 2 VP

g2G
P

p2IPg :e2p y
p
gfðgÞ � � � cðeÞ; 8e 2 E

ypg 2 f0; 1g; 8p; g

8>><
>>: : (6)

The first set of equations requires that each flow g 2 G
will be forwarded through a single path from IPg . The sec-
ond set of inequalities describes the flow-table size con-
straint on each switch v, where dðvÞ is the number of
residual flow entries on switch v, with dðvÞ � sðvÞ. The third
set of inequalities states that the traffic load on each link e
should not exceed � � cðeÞ, where � is the load-balancing fac-
tor (less than or equal to 1). The objective is to minimize the
load-balancing factor �.

6.2 Algorithm Design for MT-LB

Observing Eq. (6), there are standard rounding-based
approximate methods for this problem. An example is
relaxation and random rounding [44]. It relaxes Eq. (6) by
replacing the fourth line of integer constraints with 0 � ypg �
1, and obtains a linear programming problem. We can solve

it using the linear programming solver, and derive the opti-
mal solution. Then, we round ypg to zero or one probabilisti-
cally based on its fractional value. The algorithm for MT-LB
is described in Algorithm 3. We use this method in the
numerical evaluation of the proposed work.

In the practical scenarios, many flowsmay burst in the net-
work, and the controller is unable to provide exact-match
entries for each individual flow due to flow-table size con-
straint. To deal with this case and make our solution more
practical, we will choose some switch pairs with less traffic
amount, and deploy default paths for these flows.Meanwhile,
the controller removes the exact-match rules for these flows so
as to set aside some entries for accommodating potential
arrival flows.

7 PERFORMANCE EVALUATION

To explore feasibility and efficiency of HiFi, we perform
both experimental study and simulation evaluation. In this
section, we first introduce the performance metrics and
methodology. Then we give the results of experimental
evaluation and simulation evaluation.

7.1 Performance Metrics and Methodology

In this section, we evaluate HiFi through small-scale testbed
implementation and large-scale simulations, and compare it
with the following existing approaches. (1) The first one is
the RLJD algorithm [31], which installs exact-match entries
on all switches along each forwarding path. To enhance the
competitiveness of this algorithm, we modify the per-flow
routing strategy in the final step by heuristically aggregate
per-flow entries based on destination, while for each flow
leaving at least one switch to keep the per-flow entry, in
order to satisfy the “controllable” constraint. After this
modification, RLJD can achieve better performance than the
original one while compared with HiFi. (2) The second one
is Presto [26], which is designed for hierarchical networks
to achieve load balancing. Specifically, it installs exact-
match entries on edge switches to control new arrival flows
and installs wildcard entries on internal switches to relieve
the load of core switches. For a fair comparison, we also
extend this design to non-hierarchical network. Specifically,
we install an exact-match entry only on the egress switch
for each flow and install wildcard entries on other switches.
Presto may encounter resource bottleneck at edge switches,
which will be shown in the following simulations.

To compare the performance of three algorithms, we use
the following performance metrics in our evaluation: (1)
The number of Packet-in messages; (2) The number of con-
trollable flows; (3) The number of required flow entries; (4)
The control overhead (the communication traffic volume
to/from the controller); (5) Flow setup delay; (6) Packet loss
ratio; (7) The maximum throughput of the network; and (8)
Load-balancing factor �. When a flow arrives at a switch,
and it does not match any existing entries on the flow table,
the OpenFlow Agent of the switch will encapsulate the
packet into a Packet-in message and send to the controller
for requesting routing strategy. We measure the maximum
number of encapsulated Packet-in messages on any switch
during the simulation as the first metric. Note that, too
many Packet-in messages will consume the CPU cycles,

736 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

communication bandwidth and memory in both the switch
and the controller, which may cause worse network perfor-
mance (i.e., high packet loss ratio and high flow setup
latency) [45]. Once receiving the Packet-in message of this
flow, the controller controls this flow, then we obtain the
second metric. The controller computes the route and sends
Flow-mod commands to corresponding switches for entry
installment. We measure the maximum number of required
flow entries on any switch at any time and the maximum
communication traffic volume to/from the controller dur-
ing the simulation as the third and fourth metrics. Once the
flow entries are installed, the flow can be forwarded to des-
tination according to matched flow entries. We measure the
maximum flow setup delay and packet loss ratio of all flows
as the fifth and sixth metrics. Meanwhile, we measure the
maximum throughput that the network can support and
the traffic link fðeÞ of each link e. Then, we compute the
load-balancing factor � ¼ maxffðeÞ=cðeÞ; e 2 Eg.

The simulations are performed under two scenarios. The
first scenario has no flow-table size (FTS) constraint, assum-
ing that the switches have sufficient entries to handle all
flows. This hypothetical scenario tests how well three algo-
rithms perform when the FTS is sufficient. The second sce-
nario has an FTS constraint and tests the performance of
these algorithms when the FTS is limited.

7.2 Testbed Evaluation

7.2.1 Implementation On the Platform

Our testbed is built on a real topology obtained from the
Internet Topology Zoo [46], called Epoch [47], which con-
tains 6 nodes (switches) and 7 links. We randomly deploy
several terminals on our small-scale testbed to simulate dif-
ferent flows, and the topology is illustrated in Fig. 4. Our
SDN platform is mainly composed of three parts: a control-
ler, 6 Open vSwitches (Version 2.5.3) [48] and 5 virtual
machines (acting as terminals). Each Open vSwitch and its
connected virtual machines are run on a server with a core
i5-3470 processor and 8 GB of RAM. The link capacity is set
as 200 Mbps for simplicity. We use the OpenDaylight Lith-
ium-SR1 release [49] as the controller software running on a
server with a core i7-8700k processor and 16GB of RAM.

We implement our tests with a set of synthetic and realis-
tic workloads. Similar to previous works [24], [26] , our syn-
thetic workloads include: (1) random flows, each terminal

sends to several random terminals; (2) server flows, random
terminals send the traffic to a number of designated termi-
nals. These flows can simulate the traffic of mail servers and
web servers; (3) associative flows, these flows simulate the
communications between a terminal and a number of desig-
nated terminals, e.g., traffic between the finance department
and the database. The authors of [29] have shown that less
than 20 percent of the top-ranked flows may be responsible
for more than 80 percent of the total traffic. Thus, we allo-
cate the size for all workloads according to this 2-8 distribu-
tion and the expected traffic demand of each flow is 1 Mbps.

Weuse iperf3.3 [50] to simulate diverse kinds of flows, such
as different packet size and traffic duration. First, for each
server terminal, we start several iperf servers tomonitor differ-
ent ports. Then, we generate TCP/UDP flows with different
packet size and traffic duration to simulate different applica-
tions. At last we obtain traffic behavior data (i.e., packet loss
ratio, throughput, latency etc.) through iperf3.3 tool.

7.2.2 Testing Results

We run four sets of experiments on the SDN platform and
execute each experiment 50 times and average the numeri-
cal results for accuracy. The first two sets of experiments are
performed without flow-table size constraint, the default
number of flows is set as 300. The last two sets of experi-
ments are performed with flow-table size constraint and the
default flow-table size is set as 100.

In the first experiment, we observe the number of
required flow entries and the number of Packet-in messages
on all switches. The testing results are shown in Figs. 5 and
6. Fig. 5 indicates that HiFi, Presto and RLJD need 69, 80
and 172 flow entries at most, respectively, which means that
our proposed algorithm can reduce the maximum number
of required flow entries by about 15 and 60 percent com-
pared with Presto and RLJD, respectively. Fig. 6 shows that
HiFi, Presto and RLJD generate 129, 149 and 231 Packet-in
messages at most on any switch during the experiment,
respectively. That is because our proposed system has pre-

Fig. 4. Topology of the SDN Platform. We implement our proposed algo-
rithm and other benchmarks on a small-scale testbed. Our testbed is
mainly composed of three parts: a controller, six Open vSwitches and
five virtual machines.

Fig. 5. No. of flow entries on each switch.

Fig. 6. No. of packet-in on each switch.

ZHAO ET AL.: ACHIEVING FINE-GRAINED FLOW MANAGEMENT THROUGH HYBRID RULE PLACEMENT IN SDNS 737

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

deployed some wildcard entries, which has reduced the
interaction between data plane and control plane when
flows arrive at switches. Note that, the performance gap
between HiFi and Presto will be more obvious in large-scale
simulations, which has been shown in Section 7.3. The work
presented in [45] has illustrated that encapsulating Packet-
in messages is time-consuming and cpu-consuming for low
end CPU of switches and most commodity switches can
only encapsulate Packet-in messages at the rate of 150 per
second. The following experiments also indicate that too
many Packet-in messages may cause high packet loss ratio
and high latency.

In the second experiment, we observe the packet loss
ratio and flow setup delay by changing the number of flows
in the network. As shown in Figs. 7 and 8, when we gener-
ate 500 new flows simultaneously using iperf3.3 in the net-
work, HiFi can reduce the maximum packet loss ratio of any
flows by about 29 and 19 percent compared with RLJD and
Presto, respectively. Meanwhile, HiFi only needs 74ms at
most to setup a new flow while RLJD needs 154 ms and
Presto needs 88ms to setup a new flow. Thus, the less inter-
action between data plane and control plane (i.e., less
Packet-in messages and less Flow-mod commands/flow
entries) of HiFi will make the lower packet loss ratio and
lower flow setup delay as shown in Figs. 7 and 8.

The third set of experiments compares the number of
controllable flows by varying the number of flows in the
network and the number of available flow entries on the
switches. As shown in Fig. 9, when there are 100 flows in

the network, all three algorithms can control all flows with
fine-grained management. That is because the flow-table
size (i.e.,100) is sufficient to handle all flows (i.e.,100 flows).
However, when there are more flows in the network, HiFi
can control more flows than the other two algorithms under
flow-table size constraint. That’s because HiFi requires
fewer entries per flow on average than RLJD, and distrib-
utes exact-match entries on all switches more evenly than
Presto. Specifically, when there are 600 flows in the net-
work, HiFi can control 538 flows while RLJD and Presto
control only 201 and 448 flows, respectively. In other words,
HiFi improves the number of controllable flows about
20 percent compared with Presto. As shown in Fig. 10,
when there are 300 flows in the network, and we change the
number of available flow entries, we observe that our pro-
posed algorithm can control more flows when the number
of available flow entries is limited (i.e., only 60 available
entries on each switch).

The last set of experiments observes themaximum through-
put in the network by changing the number of flows in the net-
work and the number of available flow entries on the switches.
The results are shown in Figs. 11 and 12. As shown in Fig. 11,
we set the flow-table size as 100. Due to our proposed system
uses fewer flow entries, HiFi can achieve higher network
throughput compared with other algorithms with the increas-
ing of flows. For example, when there are 500 flows in the net-
work, HiFi improves the network throughput by about 122
and 24 percent compared with RLJD and Presto, respectively.
Fig. 12 shows thatHiFi can achieve better network throughput

Fig. 7. Packet loss ratio versus no. of flows.

Fig. 8. Flow setup delay versus no. of flows.

Fig. 9. No. of controllable flows versus no. of flows.

Fig. 10. No. of controllable flows versus no. of flow entries.

Fig. 11. Throughput versus no. of flows.

Fig. 12. Throughput versus no. of flows entries.

738 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

when the flow entries are limited. That is because HiFi can
select partial flows for fine-grained management and others
for coarse-grained management so as to serve all flows with
flow-table size constraint as illustrated in Section 6.2.

From these testing results, we state that HiFi can achieve
better traffic behavior (i.e., lower packet loss ratio and flow
setup delay) with less resource usage (i.e., less flow entry
cost compared with the other two algorithms) while keep-
ing fine-grained flowmanagement. Moreover, our proposed
algorithm can control more flows than the other two algo-
rithms under the same FTS constraint.

7.3 Simulation Evaluation

7.3.1 Simulation Settings

We select two practical topologies. The first topology,
denoted as (a), is a hierarchical Fat-Tree topology [27]. This
topology has been widely used in many datacenter net-
works. It contains 16 core switches, 32 aggregation switches,
32 edge switches and 128 servers. The second one is a non-
hierarchical campus network from [51], denoted as (b), con-
taining 100 switches and 200 terminals. For both topologies,
we execute each simulation 10 times and average the
results. The link capacity is set as 1 Gbps for simplicity. The
flow size is drawn from random flows, server flows and
associative flows discussed in Section 7.2.1.

7.3.2 Performance Comparison Without FTS

Constraint

The first set of simulations comparesHiFi, RLJD and Presto in
the scenario without FTS constraint. The results are shown in
Figs. 13, 14, 15, and 16. The horizontal axis of Fig. 13 is the
number of flows in the network, ranging from 3�104 to
18�104. The maximum number of required entries increases
for all three solutions. In comparison, HiFi uses much fewer
entries than RLJD and Presto. For example, when there are
12�104 flows in the Fat-Tree network, our solution requires
2,476 entries at most while Presto and RLJD require 4,520 and
7,920 entries, respectively. That meansHiFi reduces the maxi-
mum number of required entries by about 45 and 69 percent
comparedwith Presto andRLJD, respectively.

We plot the load-balancing factor of these algorithms in
Fig. 14. To observe the performance of different applications
(i.e., load-balancing or throughput maximization), we add
another benchmark, denoted as OPT. We note that OPT may
denote different solutions for various applications. For load
balancing, OPT can be derived by solving relaxed MT-LB
using a linear program solver. This figure shows that our solu-
tion only increases load-balancing factor by about 3 and 5 per-
cent comparedwithRLJD andOPT, respectively. Besides,HiFi
achieves better load-balancing factor than Presto, especially in
a non-hierarchical campus network. For example, when there
are 9�104 flows, HiFi reduces the load-balancing factor by
about 34 percent compared with Presto. It means that Presto
cannot achieve satisfactory performance in a non-hierarchical
networkwhileHiFi can achieve nearly optimal performance in
both non-hierarchical and hierarchic networks. For network
throughput, the OPT solution will gradually increase the traf-
fic intensity until the link capacity is fully utilized. Fig. 15
shows that our proposed algorithm achieves better network
throughout than Presto. For example, when there are 15�104

flows in the campus network,HiFi increases network through-
put by about 38 percent compared with Presto and achieves
similar throughput comparedwith PLJD andOPT.

Fig. 16 shows that HiFi can achieve similar control com-
munication overhead compared with Presto and achieve
much smaller control communication overhead compared
with RLJD. As the number of flows increases, RLJD installs
more flow entries than HiFi and Presto, which results in
higher control overhead than two other solutions. For exam-
ple, when there are 12�104 flows in the campus network,
the control overhead of RLJD, Presto and HiFi will reach
421 Mbps, 234 Mbps and 253 Mbps, respectively.

7.3.3 Performance Comparison With FTS Constraint

The second set of simulations compares HiFi, RLJD and
Presto in the scenario with FTS constraint, where the FTS
constraint is set as 4,000 on each switch by default [29]. We
first compare the number of controllable flows by changing
the number of flows in the network. The results are shown in
Fig. 17. We claim that our solution can control more flows

Fig. 13. Max. flow entries versus no. of flows without FTS constraint.
Left plot: (a) Fat-Tree; right plot: (b) Campus.

Fig. 14. Load-balancing factor versus no. of flows without FTS con-
straint. Left plot: (a) Fat-Tree; right plot: (b) Campus.

Fig. 15. Throughput versus no. of flows without FTS constraint. Left plot:
(a) Fat-Tree; right plot: (b) Campus.

Fig. 16. Control overhead versus no. of flows without FTS constraint.
Left plot: (a) Fat-Tree; right plot: (b) Campus.

ZHAO ET AL.: ACHIEVING FINE-GRAINED FLOW MANAGEMENT THROUGH HYBRID RULE PLACEMENT IN SDNS 739

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

than the other two algorithms. For example, as shown in the
right plot of Fig. 17, when there are 15 � 104 flows, our pro-
posed algorithm can control about 14 � 104 flows while the
other two algorithms can only control 7.1� 104 and 9.5� 104

flows, respectively. It means that HiFi increases the number
of controllable flows by about 48 and 97 percent compared
with Presto and RLJD, respectively. Besides, when the num-
ber of flows in the network is constant (i.e., 12�104), we
observe the number of controllable flows by varying the FTS
constraint. As shown in Fig. 18, we can also claim that our
proposed algorithm is able to control more flows than the
other two algorithms under the same FTS constraint. That is
because (1) HiFi requires fewer flow entries than RLJD per
flow on average; and (2) HiFi can distribute exact-match
entries on all switches evenly while Presto only installs
exact-match entries on ingress switches.

Fig. 19 shows that when the number of flow entries is con-
stant (i.e., 4,000), the network performance (e.g., throughput)
of our algorithm is much better than that of Presto and RLJD.
For example, when there are 15 � 104 flows in the Fat-Tree
network, our proposed algorithm can improve throughput by
about 28 and 77 percent compared with Presto and RLJD,
respectively. Moreover, HiFi can achieve similar throughput
compared with OPT, which means high effectiveness of our
proposed approximation algorithms.

From these simulation results, we can draw some conclu-
sions. First, from Figs. 13, 14, 15, and 16, when there is no
FTS constraint, HiFi can reduce the number of maximum
flow entries by about 45 and 69 percent compared with
Presto and RLJD, respectively. Accordingly, HiFi decreases
the control overhead by about 40 percent compared with
RLJD. Besides, our proposed algorithm can achieve similar
performance (e.g., load-balancing factor, throughput) com-
pared with RLJD and OPT. Moreover,HiFi can improve net-
work performance by about 38 percent compare with Presto
while using a similar (or less) number of flow entries in a
non-hierarchical network. Second, from Figs. 17, 18, and 19,
when the FTS is limited, our algorithm can improve the
number of controllable flows by about 48 and 97 percent
compared with Presto and RLJD, respectively.

7.3.4 The Impact of Estimation Error

As shown in the end of Section 3.4 (workflow section), when a
timer (e.g., 10min) expires, HiFi needs to estimate the traffic
synopsis (i.e., the number of flows between each source-desti-
nationpair) to determine how to installwildcard entries. Traffic
prediction is an important research issue in the field of routing
optimization and many works have devoted to improve the
prediction accuracy [37], [39], [52], [53], [54], [55]. Due to the
plenty prior works on traffic prediction, the prediction error
has been greatly reduced. For example, the recent work [52]
has evaluated their prediction model on seven traffic datasets
(including three real-world traffic datasets). The results show
that the estimation errors for all seven traffic datasets are less
than 18 percent. In this section,we evaluate the impact of traffic
estimation error on network performance. Though these solu-
tions may have some estimation errors, we find that even with
these traffic estimation errors, our proposed algorithm can still
achieve a satisfactory performance, which has been validated
through the extensive simulations as follows.

We have added two sets of simulations to test the impact
of traffic estimation error on network performance as shown
in Figs. 20 and 21. Specifically, we assume that the actual
number of flows from source u1 to destination u2 is
Nðu1; u2Þ. We simulate the case of X% estimation error as
the predicted number of flows eNðu1; u2Þ from u1 to u2 is
equal to ð1�X%Þ �Nðu1; u2Þ or ð1þX%Þ �Nðu1; u2Þ. We
have compared the network performance under different
prediction errors (i.e., 0, 10, 20 and 40 percent) and the FTS
constraint is by default set as 4,000 on each switch [29]. For
simplicity, we use HIFI-0, HIFI-10, HIFI-20 and HIFI-40 to
denote the estimation errors of 0, 10, 20 and 40 percent,
respectively, in the simulation.

The first set of simulations shows the number of controlla-
ble flows by changing the number of flows in the network. We
claim that the number of controllable flows is only slightly
reduced when the estimation error is less than 20 percent (or
even 40 percent). For example, as shown in the left plot of
Fig. 20, when there are 15 � 104 flows, HIFI-0 (i.e., estimation
error = 0 percent) can control about 15 � 104 flows while the
results of other estimation errors can control 14.6 � 104, 13.9

Fig. 17. No. of controllable flows versus no. of flows with FTS constraint.
Left plot: (a) Fat-Tree; right plot: (b) Campus.

Fig. 18. No. of controllable flows versus no. of flow entries with FTS con-
straint. Left plot: (a) Fat-Tree; right plot: (b) Campus.

Fig. 19. Throughput versus no. of flows with FTS constraint. Left plot:
(a) Fat-Tree; right plot: (b) Campus.

Fig. 20. No. of controllable flows versus no. of flows with FTS constraint.
Left plot: (a) Fat-Tree; right plot: (b) Campus.

740 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

� 104 and 12.9 � 104 flows, respectively. It means that the
result of 10 percent estimation error only reduces the number
of controllable flows by about 3 percent comparedwithHIFI-0.

The second set of simulations presents the network
throughput by changing the number of flows in the net-
work. The results are shown in Fig. 21. We can conclude
that estimation error only has little influence on network
throughput. For example, when there are 18�104 flows in
campus network, HIFI-0 can achieve nearly 65 Gbps
throughput while the results of other estimation errors can
achieve throughput nearly 62 Gbps, 59 Gbps, and 53 Gbps,
respectively. It means that the result of HIFI-10 only reduces
the throughput by about 4 percent compared with HIFI-0.

From the above simulations, we can conclude that the influ-
ence of estimation accuracy on network performance is accept-
able in most situations. One may say that we may cannot lose
control of any required flows in some scenarios (e.g., bank net-
work system as shown in Section 4.5). In this situation, we
assume that each required source-destination pair (i.e., related
with 10 key servers) has at least one flow. In this way, the first
set of inequalities of Eq. (1) can guarantee fine-grained man-
agement for all flows of required source-destination pairs.

8 CONCLUSION

In this paper, we have designed HiFi, which provides fine-
grained flow management with a limited number of flow
entries using a novel hybrid (wildcard and exact-match)
rule placement scheme. Several algorithms with bounded
approximation factors have been designed for wildcard
entry installment and exact-match entry installment, respec-
tively. We have implemented HiFi on our commodity SDN
platform, and simulation results have shown the high effi-
ciency and effectiveness of HiFi.

ACKNOWLEDGMENTS

This article was supported in part by the National Science
Foundation of China (NSFC) under Grants 61822210, 61936015,
and U1709217; and in part by Anhui Initiative in Quantum
Information Technologies under Grant AHY150300. Some pre-
liminary results of this article were published in the Proceed-
ings of IEEE INFOCOM2020 [1].

REFERENCES

[1] G. Zhao, H. Xu, J. Fan, L. Huang, and C. Qiao, “HiFi: Hybrid rule
placement for fine-grained flow management in SDNs,” in Proc.
IEEE Conf. Comput. Commun., 2020, pp. 1–10.

[2] N. Gude et al., “NOX: Towards an operating system for networks,”
ACMComput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

[3] C.-Y. Hong et al., “Achieving high utilization with software-
driven WAN,” in Proc. ACM SIGCOMM Conf. SIGCOMM, 2013,
pp. 15–26.

[4] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is sam-
pled data sufficient for anomaly detection?” in Proc. 6th ACM SIG-
COMMConf. Internet Meas., 2006, pp. 165–176.

[5] Y. Zhang, “An adaptive flow counting method for anomaly detec-
tion in SDN,” in Proc. 9th ACM Conf. Emerg. Netw. Experiments
Technol., 2013, pp. 25–30.

[6] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering
in software defined networks,” in Proc. IEEE Conf. Comput. Com-
mun., 2013, pp. 2211–2219.

[7] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” in Proc. ACM SIGCOMM Conf. SIGCOMM, 2013,
pp. 3–14.

[8] T. Pan, X.Guo, C. Zhang, J. Jiang,H.Wu, and B. Liuy, “Trackingmil-
lions of flows in high speed networks for application identification,”
in Proc. IEEEConf. Comput. Commun., 2012, pp. 1647–1655.

[9] A. Craig, B. Nandy, I. Lambadaris, and P. Ashwood-Smith, “Load
balancing for multicast traffic in SDN using real-time link cost mod-
ification,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 5789–5795.

[10] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang,
“Incremental deployment and throughput maximization routing for
a hybrid SDN,” IEEE/ACMTrans. Netw., vol. 25, no. 3, pp. 1861–1875,
Jun. 2017.

[11] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen, “Is every
flow on the right track?: Inspect SDN forwarding with rulescope,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.

[12] J. P. Sheu and Y. C. Chuo, “Wildcard rules caching and cache
replacement algorithms in software-defined networking,” IEEE
Trans. Netw. Service Manage., vol. 13, no. 1, pp. 19–29, Mar. 2016.

[13] S. Bera, S. Misra, and A. Jamalipour, “FlowStat: Adaptive flow-
rule placement for per-flow statistics in SDN,” IEEE J. Sel. Areas
Commun., vol. 37, no. 3, pp. 530–539, Mar. 2019.

[14] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite
CacheFlow in software-defined networks,” in Proc. 3rd Workshop
Hot Topics Softw. Defined Netw., 2014, pp. 175–180.

[15] B. Agrawal and T. Sherwood, “Modeling TCAM power for next
generation network devices,” in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw., 2006, pp. 120–129.

[16] M. Rui, H. Zeng, C. Kim, J. Lee, andM. Yu, “SilkRoad: Making state-
ful layer-4 load balancing fast and cheap using switching ASICs,” in
Proc. Conf. ACM Special Interest Group Data Commun., 2017, pp. 15–28.

[17] SDN programmable network switch, 2020. [Online]. Available:
https://noviflow.com/noviswitch/

[18] G. P. Katsikas, T. Barbette, D. Kostic, R. Steinert, and G. Q. M. Jr,
“Metron: NFV service chains at the true speed of the underlying
hardware,” in Proc. 15th USENIX Symp. Netw. Syst. Des. Implemen-
tation, 2018, pp. 171–186.

[19] Hewlett Packard. HPE FlexNetwork 5130 EI switch series, 2020.
[Online]. Available: https://h50146.www5.hpe.com/products/
networking/datasheet/HP_5130EI_Swi tch_Series_J.pdf.

[20] C. Metter, S. Gebert, S. Lange, T. Zinner, P. Trangia, andM. Jarschel,
“Investigating the impact of network topology on the processing
times of SDN controllers,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw.
Manage., 2015, pp. 1214–1219.

[21] M. Rifai et al., “Too many SDN rules? Compress them with min-
nie,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–7.

[22] G. Zhao, H. Xu, S. Chen, L. Huang, and P. Wang, “Deploying
default paths by joint optimization of flow table and group table in
SDNs,” in Proc. IEEE 25th Int. Conf. Netw. Protocols, 2017, pp. 1–10.

[23] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “OFFICER:
A general optimization framework for OpenFlow rule allocation
and endpoint policy enforcement,” in Proc. IEEE Conf. Comput.
Commun., 2015, pp. 478–486.

[24] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-
defined networking through hybrid switching,” in Proc. IEEE
Conf. Comput. Commun., 2017, pp. 1–9.

[25] B. Claise et al., “Cisco systems NetFlow services export version 9,”
J. Int. Eng. Task Force, 2004.

[26] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,”
ACMSIGCOMMComput. Commun. Rev., vol. 45, pp. 465–478, 2015.

[27] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” ACM SIGCOMM Comput.
Commun. Rev., vol. 38, no. 4, pp. 63–74, 2008.

[28] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: Topology, routing, and packaging of efficient large-
scale networks,” in Proc. Conf. High Perform. Comput. Netw. Storage
Anal., 2009, Art. no. 41.

Fig. 21. Throughput versus no. of flows with FTS constraint. Left plot:
(a) Fat-Tree; right plot: (b) Campus.

ZHAO ET AL.: ACHIEVING FINE-GRAINED FLOW MANAGEMENT THROUGH HYBRID RULE PLACEMENT IN SDNS 741

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

https://noviflow.com/noviswitch/
https://h50146.www5.hpe.com/products/networking/datasheet/HP_5130EI_Swi tch_Series_J.pdf.
https://h50146.www5.hpe.com/products/networking/datasheet/HP_5130EI_Swi tch_Series_J.pdf.

[29] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, pp. 254–265, 2011.

[30] H. Xu, Z. Yu, X.-Y. Li, C. Qian, and L. Huang, “Real-time update
with joint optimization of route selection and update scheduling for
SDNs,” in Proc. IEEE 24th Int. Conf. Netw. Protocols, 2016, pp. 1–10.

[31] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect of
forwarding table size on SDN network utilization,” in Proc. IEEE
Conf. Comput. Commun., 2014, pp. 1734–1742.

[32] D. Katz, K. Kompella, and D. Yeung, “Traffic engineering (TE)
extensions to OSPF version 2,” Ietf Rfc, vol. 170, no. 4, p. 1, 2003.

[33] J. Liu, Y. Lai, and S. Zhang, “FL-GUARD: A detection and defense
system for DDoS attack in SDN,” in Proc. Int. Conf. Cryptogr. Secur.
Privacy, 2017, pp. 107–111.

[34] L. Luo, H. Yu, and S. Luo, “Scalable fine-grained path control in
software defined networks,” 2016, arXiv:1611.09011.

[35] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, and D. Rossi,
“FlowMon-DPDK: Parsimonious per-flow software monitoring at
line rate,” in Proc. Netw. Traffic Meas. Anal. Conf., 2018, pp. 1–8.

[36] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward soft-
ware-defined middlebox networking,” in Proc. 11th ACM Work-
shop Hot Topics Netw., 2012, pp. 7–12.

[37] A. Azzouni and G. Pujolle, “NeuTM: A neural network-based
framework for traffic matrix prediction in SDN,” in Proc. IEEE/
IFIP Netw. Operations Manage. Symp., 2018, pp. 1–5.

[38] H. Xu, Z. Yu, C. Qian, X.-Y. Li, and Z. Liu, “Minimizing flow sta-
tistics collection cost of SDN using wildcard requests,” in Proc.
IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[39] P. Cortez, M. Rio, M. Rocha, and P. Sousa, “Internet traffic fore-
casting using neural networks,” in Proc. IEEE Int. Joint Conf. Neural
Netw. Proc., 2006, pp. 2635–2642.

[40] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“Simple-fying middlebox policy enforcement using SDN,” ACM
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 27–38, 2013.

[41] G. P. Ingargiola and J. F. Korsh, “Reduction algorithm for zero-
one single knapsack problems,” Manage. Sci., vol. 20, no. 4-part-i,
pp. 460–463, 1973.

[42] M. Bansal and V. Venkaiah, “Improved fully polynomial time
approximation scheme for the 0-1 multiple-choice knapsack
problem,” Int. Inst. Inform. Technol., Tech. Rep., 2004.

[43] X. Jin et al., “Dynamic scheduling of network updates,” in Proc.
ACM SIGCOMM Conf. SIGCOMM, 2014, pp. 539–550.

[44] T. Friedrich and T. Sauerwald, “Near-perfect load balancing by
randomized rounding,” in Proc. 41st Annu. ACM Symp. Theory
Comput., 2009, pp. 121–130.

[45] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch:
Elastically scaling up SDN control-plane using vSwitch based
overlay,” in Proc. 10th ACM Int. Conf. Emerg. Netw. Experiments
Technol., 2014, pp. 403–414.

[46] The internet topology zoo, Accessed: Jul. 2020. [Online]. Avail-
able: http://www.topology-zoo.org/

[47] The epoch topology, Accessed: Jul. 2020. [Online]. Available:
http://www.topology-zoo.org/maps/Epoch.jpg

[48] Open vSwitch: Open virtual switch, Accessed: Apr. 2020.
[Online]. Available: http://openvswitch.org/

[49] Linux foundation collaborative project, Accessed: Apr. 2020.
[Online]. Available: http://opendaylight.org/

[50] Iperf3.3, Accessed: Apr. 2020. [Online]. Available: http://
software.es.net/iperf/news.html#iperf-3–3-released

[51] Simulating network topologies, Accessed: Apr. 2020. [Online].
Available: http://www.ecse.monash.edu.au/twiki/bin/view/
InFocus/LargePacket-switch ingNetworkTopologies

[52] A. Saha, N. Ganguly, S. Chakraborty, and A. De, “Learning net-
work traffic dynamics using temporal point process,” in Proc.
IEEE Conf. Comput. Commun., 2019, pp. 1927–1935.

[53] A. Bayati, K. K. Nguyen, and M. Cheriet, “Multiple-step-ahead
traffic prediction in high-speed networks,” IEEE Commun. Lett.,
vol. 22, no. 12, pp. 2447–2450, Dec. 2018.

[54] Y. Li, H. Liu, W. Yang, D. Hu, X. Wang, and W. Xu, “Predicting
inter-data-center network traffic using elephant flow and sublink
information,” IEEE Trans. Netw. Service Manage., vol. 13, no. 4,
pp. 782–792, Dec. 2016.

[55] W.Hao, C. Li, C. Kai, Z. Li, and Y. Geng, “FLOWPROPHET: Generic
and accurate traffic prediction for data-parallel cluster computing,”
in Proc. IEEE 35th Int. Conf. Distrib. Comput. Syst., 2015, pp. 349–358.

Gongming Zhao received the PhD degree in
computer software and theory from the University
of Science and Technology of China, China, in
2020. He is currently an associate professor in
the University of Science and Technology of
China, China. His current research interests
include software-defined networks and cloud
computing.

Hongli Xu (Member, IEEE) received theBSdegree
in computer science from the University of Science
and Technology of China, China, in 2002, and the
PhD degree in computer software and theory from
the University of Science and Technology of China,
China, in 2007. He is a professor with the School of
Computer Science and Technology, University of
Science and Technology of China (USTC), China.
He was awarded the Outstanding Youth Science
Foundation of NSFC, in 2018. He has won the Best
Paper Award or the Best Paper Candidate in sev-

eral famous conferences. He has published more than 100 papers in
famous journals and conferences, including the IEEE/ACM Transactions
on Networking, IEEE Transactions on Mobile Computing, IEEE Transac-
tions on Parallel and Distributed Systems, INFOCOM, ICNP, etc. He has
also held more than 30 patents. His main research interest is software
defined networks, edge computing, and Internet of Thing.

Jingyuan Fan received the BEng andMS degrees
from Fudan University, China, and the University of
California, Los Angeles, Los Angeles, California, in
2012 and 2014, respectively, and the PhD degree
in computer science from the State University of
New York at Buffalo, Buffalo, New York, in 2019.
His research interests lie in the field of computer
networks and distributed systems.

Liusheng Huang (Member, IEEE) received the
MS degree in computer science from the Univer-
sity of Science and Technology of China, China,
in 1988. He is currently a senior professor and
PhD supervisor of the School of Computer Sci-
ence and Technology, University of Science and
Technology of China, China. He has published
six books and more than 300 journal/conference
papers. His research interests are in the areas of
Internet of Thing, vehicular ad hoc network, infor-
mation security, and distributed computing.

Chunming Qiao (Fellow, IEEE) is currently a
SUNY distinguished professor and also the chair of
the Computer Science and Engineering Depart-
ment, University at Buffalo, Buffalo, New York. He
has published extensively with an H-index of more
than 69 (according to Google Scholar). He holds
seven U.S. patents, and served as a consultant for
several IT and telecommunications companies
since 2000. His current focus is on connected and
autonomous vehicles. He has contributions to opti-
cal and wireless network architectures and proto-

cols. Two of his papers have received the best paper awards from the IEEE
and joint ACM/IEEE venues. His research has been funded by a dozen
major IT and telecommunications companies, and more than a dozen NSF
grants.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

742 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 05,2020 at 14:02:42 UTC from IEEE Xplore. Restrictions apply.

http://www.topology-zoo.org/
http://www.topology-zoo.org/maps/Epoch.jpg
http://openvswitch.org/
http://opendaylight.org/
http://software.es.net/iperf/news.html#iperf-3--3-released
http://software.es.net/iperf/news.html#iperf-3--3-released
http://www.ecse.monash.edu.au/twiki/bin/view/InFocus/LargePacket-switch ingNetworkTopologies
http://www.ecse.monash.edu.au/twiki/bin/view/InFocus/LargePacket-switch ingNetworkTopologies

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

